Research and applications: A rational free energy-based approach to understanding and targeting disease-causing missense mutations

نویسندگان

  • Zhe Zhang
  • Shawn Witham
  • Marharyta Petukh
  • Gautier Moroy
  • Maria A. Miteva
  • Yoshihiko Ikeguchi
  • Emil Alexov
چکیده

BACKGROUND AND SIGNIFICANCE Intellectual disability is a condition characterized by significant limitations in cognitive abilities and social/behavioral adaptive skills and is an important reason for pediatric, neurologic, and genetic referrals. Approximately 10% of protein-encoding genes on the X chromosome are implicated in intellectual disability, and the corresponding intellectual disability is termed X-linked ID (XLID). Although few mutations and a small number of families have been identified and XLID is rare, collectively the impact of XLID is significant because patients usually are unable to fully participate in society. OBJECTIVE To reveal the molecular mechanisms of various intellectual disabilities and to suggest small molecules which by binding to the malfunctioning protein can reduce unwanted effects. METHODS Using various in silico methods we reveal the molecular mechanism of XLID in cases involving proteins with known 3D structure. The 3D structures were used to predict the effect of disease-causing missense mutations on the folding free energy, conformational dynamics, hydrogen bond network and, if appropriate, protein-protein binding free energy. RESULTS It is shown that the vast majority of XLID mutation sites are outside the active pocket and are accessible from the water phase, thus providing the opportunity to alter their effect by binding appropriate small molecules in the vicinity of the mutation site. CONCLUSIONS This observation is used to demonstrate, computationally and experimentally, that a particular condition, Snyder-Robinson syndrome caused by the G56S spermine synthase mutation, might be ameliorated by small molecule binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-silico Evaluation of Rare Codons and their Positions in the Structure of ATP8b1 Gene

Background: Progressive familial intrahepatic cholestases (PFIC) are a spectrum of autosomal progressive liver diseases developing to end-stage liver disease. ATP8B1 deficiency caused by mutations in ATP8B1 gene encoding a P-type ATPase leads to PFIC1. The gene for PFIC1 has been mapped on a 19-cM region of 18q21-q22, and a gene defect in ATP8B1 can cause deregulations in bile salt transporters...

متن کامل

Computational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta

Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...

متن کامل

SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how ...

متن کامل

Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...

متن کامل

Association of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)

Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form‌ of colorectal cancer and an autosomal dominant inheri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Medical Informatics Association : JAMIA

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2013